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Abstract
The formation of polaron and its migration in a DNA chain are studied within a semiclassical
Peyrard–Bishop–Holstein polaron model. Comparing the energetics of the polaron system
found from the quantum-chemical and semiclassical calculations, we extract the charge–phonon
coupling constant for poly-DNA sequences. The coupling constant is found to be larger for
G–C than for the A–T pairs. With this coupling constant we study tunneling in DNA. The rates
and the nature of tunneling have strong dependence on the DNA sequence. By changing the
trap positions in the molecular bridge the tunneling rate can be varied by up to seven orders of
magnitude.

The discovery of conductance in DNA has attracted many
researchers to investigate the transport properties [1–9] of
DNA. For the (G–C)(A–T)N (G–C)3 DNA sequences the
mechanism of charge transfer is more or less clear [1–4]
and is described by the competition between tunneling and
hopping transfer. But for the poly- and mixed DNA sequences
the experimental data observed by different groups are often
contradictory. In some experiments a high conductivity was
obtained [6, 7], while in others the conductivity was rather
low [8, 9]. In the works devoted to simulation of charge
transfer in DNA within the tight-binding Hamiltonian [10, 11]
or the system of kinetic equations [3, 4], no explanation of this
phenomena was found. In these models the charge transfer
integral between the nearest base pairs and the energy gap
between the states were the key parameters. At the same time
the models did not take into account consistently the effect
of geometry fluctuations or phonons on the charge transfer
processes in the DNA molecule. This is despite the fact
that already in 1956 Marcus pointed out [12] that geometry
fluctuations can activate and strongly affect an electronic
transition between two states.

Therefore, the models taking into account the interaction
of the migrating charge with the DNA lattice [13–18] should
be invoked for an adequate investigation of the charge
transfer in DNA. For example for the DNA molecule, an
application of the polaron model has shown promising results

for description of the charge migration [5, 13–15, 19] and for
the explanation of the temperature dependence of the DNA
conductance [5, 6, 20]. However, while the polaron formation
and polaron size in the poly- and mixed DNA chains have
been widely reported in the literature, the problem of polaron
migration in time has not received serious attention [18, 21].
Consideration of the charge transfer dynamics can indeed help
to interpret the available experimental results and provide a
more realistic picture for the DNA conductance.

In this paper, we used the Peyrard–Bishop–Holstein
(PBH) model [13, 19] for the time-dependent evolution of
polaron migration. We demonstrate the possibility to design
an artificial DNA molecule with semiconductor or insulating
behaviors simply by placing a trap at the correct points. The
study is based on the analysis of charge transfer from the
donor to the acceptor through a molecular bridge composed
of the potential barriers (A–T pairs) and the charge traps (G–
C pairs). We show that in the mixed DNA molecules the
transfer rate of the charge strongly depends on the sequences,
i.e., on the positions of the traps between the donor and the
acceptor. This position determines the relation between the
rate of charge trapping and the rate of charge escape from
the trap. Depending on this ratio the tunneling between the
donor and the acceptor can be described either as a sequential
tunneling or coherent tunneling through a trap. This difference
strongly affects the final rate of charge transfer. We show that
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the time of polaron tunneling can be changed by as much as 107

times by changing the position of the trap. The slower transfer
occurs when the polaron trapping rate is much slower than the
escape rate. On the other hand, the fastest polaron transfer
occurs when the trapping and the escape rates are equal. In this
case the tunneling has the coherent nature and the polaron only
partially occupies the trap.

We focus here on the DNA structures where the guanine
and the adenine are stacked in one DNA strand. In this case,
there is only one degree of freedom for the charge transfer—
the longitudinal one-dimensional charge tunneling through a
single strand. The polaron tunneling is described by the
system of equations within the PBH model [13, 19], where
the charge motion is treated quantum-mechanically while the
polaron tunneling classically. The PBH model is based on
coupling of the charge’s on-site energy with the structural
motion at each lattice site of DNA. Specifically, the charge
occupation on the i th DNA site leads to transverse stretching
of the hydrogen bonds connecting the bases within the base
pair and lattice distortion of their geometry. The PBH model
consist of three parts: Hamiltonians describing charge hopping
between two nearest base pairs, transverse motion of the
bases within the pair and the charge–lattice interaction. The
Schrödinger equation describing the dynamics of the charge
within the DNA chain with n sites is determined by the
Hamiltonians which include the tight-binding and the charge–
lattice interaction terms, and has the form

ih̄
d�i

dt
= −Vi−1,i�i−1 − Vi,i+1�i+1 + χi yi�i − εi�i , (1)

where �i is the probability amplitude for the charge to be on
the i th base pair, Vi−1,i (Vi,i+1) is the transfer integral between
the nearest base pairs, χi is the charge–vibrational coupling
constant for the i th site, εi is the on-site energy, yi determines
the stretching at the i th site, i.e. the displacement of the atomic
structure. The motion of the stretching displacement yi is
described by the Newton equation as [19]

m
d2yi

dt2
= −V ′

M(yi) − W ′(yi , yi−1) − W ′(yi+1, yi)

− χ |�i |2 − mγ
dyi

dt
(2)

where m is the base pair mass, γ is the friction parameter (γ =
1 ps−1 [13]), VM(yi) is the Morse potential which takes care
of the effective interactions between complementary bases and
W (yi , yi−1) is the nearest-neighbor potential of interactions of
the stacked base pairs [19]. The parameters for the deformation
potential and the interaction potential are taken from [19].

The self-consistent solution of the time-dependent
Schrödinger and Newton equations has been applied to
evaluate in time the propagation of the probability amplitude
and the position of the stretching displacement with a time step
�t = 1 fs. Here the Schrödinger equation (1) is presented as

[
1 + i

2h̄
H�t

]
�(t + �t) =

[
1 − i

2h̄
H�t

]
�(t) (3)

where the Hamiltonian H is a function of the stretching
displacements yi(t). The three-point difference scheme for

the first-order time derivation of the stretching parameter has
been used in equation (2). For the stationary solution of
equations (1) and (2), the initial occupation probability is
assumed to be close to unity on the donor site. This solution
is taken as the initial state (t = 0) for studying the polaron
dynamics. Our calculations are restricted to low temperatures,
and hence the polaron dynamics is governed by the quantum
mechanical processes.

At first we analyze the equilibrium stationary polaronic
states within a finite region of the DNA chain. Several physical
parameters, such as the on-site energy εi , transfer integral
between the nearest base pairs Vi−1,i (Vi,i+1) and the charge-
vibrational coupling constant χ , determine the polaron shape
and propagation velocity. The on-site energy for the A–T pair
has been assigned to be zero, while for the single G–C pair we
applied εi = −0.4 eV, for the (G–C)2 state the εi = −0.87 eV
and for the (G–C)3 state the εi = −1.08 eV [22]. The
velocity of polaron propagation has been found to be strongly
dependent on the magnitude of the charge transfer integral [21]
plus the trapping energies for hole in (G–C)N traps also
depends on this parameter [14]. According to the theoretical
estimations within the quantum-chemical theory, the value
of Vi−1,i (Vi,i+1) lies in the range of 0.05–0.3 eV [23–25],
while experiments indicate the value of this parameter to be
0.01 eV [26, 27]. Because of the discrepancy between the
theoretical estimations and experimental data, throughout this
paper the average value Vi−1,i = Vi,i+1 = 0.1 eV has
been used. The charge–vibration coupling constant χi is the
main parameter regulating the stretching of the polaron to the
nearest sites [19] and the magnitude of yi . The value of χi

depends on the geometries of the DNA sites participating in
the formation of the polaron. The shift of the state energy
due to the polaron occupation χi yi in the absence of the
DNA–solvent interactions can be described by the inner-sphere
reorganization energy (≈0.5λi in [23])

1

2
λN ≈

N∑
i=1

χi yi , (4)

where N is the number of sites occupied by the polaron.
Recently, the exponential decrease of the inner-sphere
reorganization energy with the elongation of the DNA chain
was found within the quantum-chemical calculations for the
(G–C)N and the (A–T)N chains [23]. The geometry relaxation
was found to have a maximum at the center of the polaron,
which agrees with the results obtained within the PBH
model [19].

The reorganization energy λN found in [23] are shown in
table 1 for the (G–C)N and the (A–T)N chains. From these
data we can estimate the coupling constants χi for different
systems. The corresponding results for χi are shown in table 1.
We have found that the coupling constant is smaller for the
A–T base pair than for the G–C pair. We also determine the
tendency in the dependence of the coupling constant on the
size of the complexes; the coupling constant decreases with
increasing sizes of the (G–C)N and (A–T)N chains.

With the values of coupling constants derived for different
base pairs we now study the properties of the polaronic state
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Figure 1. The wavefunction �i and the lattice displacement yi for
the polarons formed in GGGGGGGGG (solid line) and
AAAGGGAAA (dashed line) chains.

Table 1. The values of 1
2 λN and χi for the (G–C)N and the (A–T)N

complexes.

1
2 λN (eV)a χi (eV Å

−1
)

(G–C)N=1 0.360 1.60
(G–C)N=2 0.310 1.15
(G–C)N=3 0.265 0.90
(G–C)N=4 0.225 0.60
(A–T)N=1 0.185 1.05
(A–T)N=2 0.165 0.53
(A–T)N=3 0.140 0.40
(A–T)N=4 0.125 0.30

a Simulation results are from [23].

in the poly- and mixed DNA chains. In the poly(dG)-poly(dC)
and the poly(dA)-poly(dT) DNA molecules, according to our
calculations the polaron occupies mostly 7–9 sites. In the
mixed DNA chain, the polaron stretching is limited by the
difference between the coupling constants χi , and on-site
energies εi , for A–T and G–C pairs (see table 1). The results
for GGGGGGGGG and AAAGGGAAA chains are shown
in figure 1. The polaron in the AAAGGGAAA structure is
mostly localized within the GGG due to high potential barriers
between guanines and adenines (1.08 eV) [22].

The value of the coupling constant also determines the
polaron stretching, but its effect is strong only in the structure
with low potential barriers. An example of such structures
is the AAAAGAAAA chain where the energy gap between
the A–T and the G–C is only 0.4 eV. The results for the
AAAAGAAAA structure are shown in figure 2(a) for two
cases: (i) when the value of the coupling constant is the same
over the whole chain and is equal to χi = 0.6 eV Å

−1
[22],

and (ii) when the coupling constant is different for G–C
and A–T base pairs. Clearly, the introduction of different
coupling constants χi for A–T and G–C pairs provides stronger
localization of the polaron within the G–C trap.

The effect of the coupling constant on the polaron
localization in the GGGGAGGGG chain is illustrated in
figure 2(b). Actually, for this chain the polaron vibration mode

Figure 2. The wavefunction �i and the lattice displacement yi for
polarons formed on (a) G–C for χi = 0.6 eV Å

−1
(solid line) and

χG–C = 1.6 eV Å
−1

, χA–T = 0.4 eV Å
−1

(dashed line) and on
(b) A–T χi = 0.6 eV Å

−1
(solid line) and χG–C = 0.9 eV Å

−1
,

χA–T = 1.05 eV Å
−1

(dashed line).

is outside of the lattice band of the A–T site [19]. When the
coupling constant χi = 0.6 eV Å

−1
is the same over the whole

DNA chain, the vibration mode is only marginally delocalized.
The energy of this state is −0.81 eV, while the potential barrier
between the (G–C)N and A–T site is −0.87 eV. The polaron
in this case is almost localized at the A–T site. When we
introduce the dependence of the coupling constant on the site
type (figure 2(b) (dashed line)), the energy of the state becomes
−0.56 eV and the polaron becomes delocalized over the three
nearest G–C sites from each side of the A–T pair.

To study polaron tunneling between the DNA traps, we
first compare the energies of the polaronic states in different
types of traps. Localization of the polaron in the (G–C)N traps
shifts the energy of state to a lower value. This is the energy
of the polaron which is the eigenvalue of the Hamiltonian
corresponding to equation (1). The energy of the polaron can
also be estimated from the on-site energy εi and the electronic
energy χi yi [19]

Etot �
N∑

i=1

χi yi +
N∑

i=1

εi/N = 1

2
λN +

N∑
i=1

εi/N. (5)

For the energy difference between the polaronic states in
different traps we have found the values −0.20 eV for G–
C and (G–C)2 traps and −0.43 eV for G–C and (G–C)3

traps. Inclusion of inner-sphere reorganization energy
into the charge transfer model has brought down these
values to �ε = −0.47 eV and �ε = −0.68 eV,
respectively [22]. A direct comparison with the experimental
results in the solvent [28] would require evaluation of the
solvent reorganization energy [29], which is beyond the scope
of this work. However, for the results that follow, in particular
for the polaron migration dynamics, the solvent contribution
perhaps is not the dominant one.

The low energy gap between the states of the (G–C)N

traps results in the competition between two processes in the
mixed DNA [30]: (i) the trapping of the polaron within the
trap and (ii) the tunneling of the polaron between the (G–C)N

traps. To study the problem of polaron tunneling between the
DNA traps we have performed a numerical simulation of the
polaron dynamics in a mixed DNA chain. Here the first G–C
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Figure 3. The dynamics of propagation of the wavefunction �i and the lattice displacement yi in the chains: (a) G(A)1GG(A)3GGG and
(b) G(A)2GG(A)2GGG.

trap is a donor with localized charge on it in the initial state
and the (G–C)3 trap is an acceptor. For the system without
any additional traps, i.e. a DNA chain with only the donor
and the acceptor ((G)(A)n(G)3), we have found an exponential
dependence of the tunneling rate on the tunneling distance. Let
tn be the tunneling time for the structure (G)(A)n(G)3. We then
have for the normalized rate, t1/tn = 0.6 × 10−1 for n = 2,
1.4 × 10−3 for n = 3, and 0.6 × 10−5 for n = 4 (tn = 0.5 ns).
These data are in a good agreement with the tunneling rates in
the experimental results [31].

The new features in the polaron tunneling process are
observed for the mixed DNA structure with an additional trap
between the donor and the acceptor. Here we study the system
with the (G–C)2 trap in the (A–T)6 molecular bridge. The
dispersion of the site energies of the G–C base pairs within the
(G–C)3 where the guanine at the end has a higher site energy
than guanines located close to the sequence center [23], has
been taken into account. In the case of the (G–C)2 trap located
close to the donor site (G–C) the polaron is stretched over the
donor and the trap. As a result the polaron quickly tunnels to
the (G–C)2 trap (figure 3(a)). The polaron occupation process
takes some time and finally the polaron tunnels to the acceptor.
In this case, tunneling from the donor to the acceptor states
has the sequential nature and the tunneling processes from
the donor to the trap and from the trap to the acceptor are
uncorrelated.

When the (G–C)2 trap is placed exactly in the middle
of the (A–T)6 bridge, a significant change in the polaron
tunneling dynamics is observed (figure 3(b)). In this case,
the rate of charge tunneling from the donor to the trap is
almost equal to the rate of tunneling from the trap to the
acceptor. Therefore, the polaron is only partially localized on
the trap and the final polaron tunneling from the donor to the
acceptor is a coherent process. The curve for t = 10−6 s in
figure 3(b) shows the occurrence of the resonance effect due
to the coincidence of the trap site energy with the site energy
of the last guanine within the (G–C)3 acceptor. The rate of
charge tunneling in figure 3 is in good agreement with the
experimental results [32], where the transfer from a donor to an
acceptor in similar systems was estimated to be 10−8–10−6 s.

In figure 4 the dependence of the occupation probabil-
ity of different traps within the DNA chain is shown for
(a) G(A)1GG(A)3GGG and (b) G(A)2GG(A)2GGG struc-
tures. We again see a completely different nature of tunnel-

Figure 4. The dependence of the occupation probability |�i |2 on
time for the chains: (a) G(A)1GG(A)3GGG and
(b) G(A)2GG(A)2GGG.

ing for different positions of the trap. When the trap is close
to the donor, the charge transfer process is the sequential in-
coherent tunneling, i.e., when the polaron spends a long time
within the trap. But if the trap is moved closer to the center
of the tunneling bridge then the tunneling becomes coherent.
However, when the position of the (G–C)2 trap is closer to the
acceptor as in the G(A)3GG(A)1GGG structure, the polaron is
not localized on the trap but tunnels directly from the donor to
the acceptor. Since the trap does not participate in the charge
transfer, the width of the potential barrier for the polaron cov-
ers the whole molecular bridge (A)3GG(A)1 and coherent tun-
neling from the donor to the acceptor occurs in the range of
t = 200 s. This is 107 times slower than the time for coher-
ent tunneling through the trap (see in figures 3(b) and 4(b)).
Therefore, the transfer mechanism for the G(A)3GG(A)1GGG
sequence is similar to that for the G(A)6GGG structure.

In conclusion, from the results of the ab initio quantum
mechanical calculations, we obtained the charge–vibration
coupling constants in the Peyrard–Bishop–Holstein model
for polarons formed in the (G–C)N and the (A–T)N DNA
molecules. We have found that the coupling constants are
larger for the (G–C)N complex than for the (A–T)N . In the
poly- DNA molecule, the polaron occupies nine DNA base
pairs, while in the mixed DNA the size of the polaron is
strongly affected by the potential gap between the A–T and
the G–C sites. In addition to the properties of the stationary
polaronic state, we have also studied the dynamics of the
polaron tunneling from the donor to the acceptor. We have
found a very strong dependence of the tunneling rates on the
structure of the tunneling bridge. The position of additional
traps within the bridge strongly affects the nature of the
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tunneling process and the rates. By changing the position we
can change the tunneling rate up to seven orders of magnitude.
For the fastest tunneling rate we need the coherent tunneling,
i.e., tunneling to each of the traps should be almost equal to the
escape rate from the trap.
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